``` Unit -V Paintinia Communia & Segumes of Fambons led ( for ) he the elegenture of tend on complete violated functions horing a common deviain switch real birth R or the complex plane c for each x in the domain the lan from another earguery ( for 12) whose terms are the Corresponding quention values Let I denote the Set x for which the Second Sequence for (2) comarges The function of defined by the equation. $(2) = (2m fo(x) & 265 is called the limit function of the Sequence of boy and we say that they converges pointwise to b on the Examples of Sequence of Real Valued Functions: Properties of Sequence of Functions: 1. continuity 2. Integrability 3. Differentiability paintuits convergence does not preserve all the above properly. Continuity Example:1 A Sequence of continuous function with La discontinuous limit function use ishall 8.7 It in is continuous at c then is not necessarily continuous at a Let b_n(x) = \frac{x^{2n}}{1+x^{2n}} if x \in \mathbb{R}, h = 1/2 \dots The graphs of a few terms are is hown in the following gugue. For -12x21 was have Sn-S = 5 ax - 3. ``` Scanned by TapScanner Scanned by TapScanner ``` COME ) Let 12/21 the tim for(x) a lim x = 0 IX (1 if x=1/2 then (1/2) -> 0 as n=> Case (1) Let 1x1=1 then for(x) = 1/4 lim bolx) - 1/2 let |x | >1 then 1 ->6 (and (i)) :. lim b_n(x) = \lim_{n \to \infty} \frac{x^{2n}}{1+x^{2n}} \left( \lim_{n \to \infty} \frac{x^{2n}}{x^{2n}} \left( \frac{1+\frac{1}{2n}}{x^{2n}} \right) \right) =\lim_{n\to\infty}\frac{1}{1+\frac{1}{2n}}=\frac{1}{1+0} \lim_{n\to\infty} f_n(x) = 1 when |x| > 1 The Suguence I by converges paintaine to the paint function to on R where fox) = } 0 is 12/21, ii) -12221 1 mg (x)1, i) x>1(02) x2-1 長に一)=0、日は1-1/2、日に1+)=1 f is discontinuous at x=1 1116 of is discontinues at z = -1 There each for is continuous on a but f is discontinuous at regard e=-1. ``` Scanned by TapScanner Note: Suppose g is continuous than tem tem below below $$x \to c$$ $\left\{ \lim_{n \to \infty} b_n(x) \right\} = \lim_{n \to \infty} b_n(x)$ $\lim_{n \to \infty} \left\{ \lim_{n \to \infty} b_n(x) \right\} = \lim_{n \to \infty} b_n(x)$ $\lim_{n \to \infty} \left\{ \lim_{n \to \infty} b_n(x) \right\} = \lim_{n \to \infty} \left\{ \lim_{n \to \infty} b_n(x) \right\}$ Example: 2 A Sequence of Bunctors for which in the sequence of Scanned by TapScanner Scanned by TapScanner Deficietion of inform tomurgente Let I buy he a escapione of punctions which cominges Phintunie Consergence ! paint wife on a set 9 to a limit function 6 and for each 600 there exists an N edepending on both x and 6) now implies I bo (x) - bex) Le bor owny x65 Sorth that Example: Let Brix = x" , x & [0,1] no1,2-I but conveyes to be we have where fix) = 10 & x & (0,1) defunition. for every 470 there excits on N such that 18n00 - 600) LE 4 NON 6=1/2 |xn-61x1 = 1/2 +1 n>N te) The above inequality is true when N=1 and Box 20=0,1 of 2=3/4 and 6=1/2 the inequality is not true when Waland N = 2 But it is true when 11=3 (i) (3/4) 1-0/4 1/2 when H=2 . The croke of N depends on both 2 and 6 Uniform Convegence A Sequence of functions of buy is said to converge uniformly to b on a uset S ib, Bor every 570, there exists on N (depending only on E) Such that n>N implies I Brix - Bix) LE, Box every xE& denote this symbolish by bn - & uniformly on S. Scanned by TapScanner Note: when each term of the Sequence of Boy is real valued the genmetrical interpretation of uniform consugence is as follows 180(x) - B(x) = E - = -EL Bolz)-BON)とも → Box) - E C Bo(x) C b(x) + 6 - - 7(1) 16 (1) is to hold ofor all non and for all 268, I The entire graph of En that is the west. (oxy): J= bn(x); xes & lies within a band ob height 26 Situated symmetrically about the graph of & 第二方心中日 日子加 7y= b(x)- 6 Note: unigorm convergence implies paintuite convergence, but the converse is not true. Uniformly bounded A Sequence I but is is aid to be uniformly bounded ons, "B" there excists a constants 11/0 Such that I for wo for all x in s and Eg: 16 for (x) = Sinnx 1 x & [017] 1 6 p(x) / 61 - Leng is uniformly bounded by 1. Result: It each function on is bounded and if on my uniformly on s, then of buy is uniformly bounded on S proof: gaven, (i) Each Br is bounded (i) In -7 & uniformly on S I to y is writtormly bounded on s Since on - 76 uniformly on 8. Box every e >0, there exists N>0 such that non implies IBn (x) - B(x) LE + xES Now, | Bn(x) | - | B(x) | = | Bn(x) - B(x) | LE => 16n00 -1600 LE => 1 8n(20) < 18(20)+6 Let E=1 , then (Bn(x) / (Bix) +1 + nzN and + xES Since each on is bounded. & is bounded => 18(x) &M + XES Sub in 1) we have I BACK) < M+1 + N>N and + XES Since each function bounded. B1, b2, ... bN-2, bN-1 are all bounded bunctions on S Then there exists constants M, M2, MN-179N 9 1 Be(2) | 4mi , i=1,2, ... N-2,N-1 Let ie) Nonk { Nn , Nn 2 , . . . MN -1 , NN y then | the(x) | < k + x & s and + n Thus Ishing is writermy bounded on S. Uniform convergence and continuity: Theorem: 9-2 Uniform limit theorem: Assume that by > & wifermly on & It each on is continuous at a paint c ob s, then the limit function & is also continuous at C. ## Scanned by TapScanner ``` Paces : 1) by -> & uniformly on S (11) Each on is continuous at a paint cools. T. P.T The limit function of is also continuous at C If c is an isolated paint of & then B is automatically Continuous at c So assume that chan accumulation point of S. Then we have to p.T & is continuous at C (ie) T. p.T lim 600 = 600 Since bn > & uniformly on 8, for overy 600 there oxists an M (depending only on 6) which that. nom implies | for(x) - f(x) | 2 /2 + 2 6 8 - 7(1) Since each bon is continuous at a bun is continuous at a - for any given Eso, there exists a neighbour hood BCC) Such that, REBLONS => 18m(x) - funco) 2 =/3 Forze acons Now, |6(x) - 6(c) = |6(x) - 6m(x) + 6m(x) - 8m(c) + 6m(c) 4 | Bm(x) - 6(x) | + | Bm(x) - Bunco) | + | bincc) - bcc) | 4 43 + 4/3 + 6/3 = 6 => 1600-1001 26 · limit function & is continuous at c. Note: 1 28 e is an accumulation paint of S, the conclusion of the above theorem implies that. lim lim bola = lem lim bola on the ``` ``` consporm convergence of flut is deappressed burns Note: 2 necessary to trasporate continuity from the sometimes forms to the limit furnition Theorem : The cauchy condition for uniform cortogens Let I had be a staguence of functions defined in a Set & there exists a function to which that he me uniformly on & if and only if the following tordition, id idalis find For every 600 these exists an A burnthat mys and nant implies I for (x) - bo(x) ) is for every x ins. given ( by) is a sequence of functions defined on Proof! a det s Necessary part: Attume that there exists a function of builthest for the wispormly on s TIPT cauchy condition is waterfreid Since for - of uniformly on Gaven 670, there oxists a auch that (Bn(x) - b(x) / 4/2 + n2 W or Taking man, we crosse 1 8m(x) - 6(x) L 6/2 4 x 6 S FOT MON, NON [ 8 m (x) - for(x) = | 8m(x) - 6(x) + 6(x) - 60(x) 6 | fm(x) - 6(x) + | 6(x) Bin) ``` Scanned by TapScanner